Experimental Studies of Intrinsic Kinetics and Diffusion during Methane Steam Reforming
نویسنده
چکیده
The intrinsic kinetics and diffusion behaviour of methane steam reforming have been investigated in this work. Measurements of effective diffusivities of the gases present in methane steam reforming have been carried out by using the steady-state technique over wide ranges of temperature and pressure in a modified Wicke-Kallenbach (W-K) type diffusion apparatus. The effects of diffusion limitation on the reactions were examined at atmospheric pressure in a pellet reactor; and the intrinsic kinetics of methane steam reforming have been studied on a commercial nickel/alumina catalyst (ICI 57-4) in an integral reactor. A simulation study has been carried out to determine the effects of hydrogen removal on the performance of a membrane reactor and the catalyst activity for methane steam reforming. For the measurements of effective diffusivities, the temperature and pressure dependencies of effective diffusivities of gases measured have been obtained, and the tortuosities of pellets used for the gases measured have been estimated by using the parallel path pore model. At ambient pressure, the temperature exponent values range from 1.0 to 1.25. This indicates that the diffusion occurs in the transition region. At pressures up to 1MPa, the diffusion lies mainly in the bulk diffusion region. The pressure exponent was generally less than 1.0 with values lying between 0.4 and 0.85 except for gas-water vapour pairs where it is close to 1.0. The tortuosities estimated for the pellets varied from 1.84 to 2.51 for different gases at ambient pressure, but decreased with increase in pressure. Using the pellet reactor that couples the diffusion and reaction for methane steam reforming, experimental results, which were obtained over catalyst pellets without holes, show that the diffusion rate of methane into the catalyst pellets almost totally controlled the reaction rate.
منابع مشابه
An Investigation into the Effect of Hydrotalcite Calcination Temperature on the Catalytic Performance of Mesoporous Ni-MgO-Al2O3 Catalyst in the Combined Steam and Dry Reforming of Methane
Several mesoporous nickel-based catalysts with MgO-Al2O3 as the catalyst support were prepared using a co-precipitation method at a constant pH. The supports were prepared from the decomposition of an Mg-Al hydrotalcite-like structure which had already been prepared with Mg/Al=1. Prior to impregnating 10 wt.% nickel on the supports, the precursor was decomposed at several ...
متن کاملPreparation of Lanthanum–Nickel–Aluminium Perovskite Systems and their Application in Methane-Reforming Reactions
In this study we developed LaNixAl1-xO3 perovskite systems using a sol-gelmethod (with propionic acid as solvent) to use in methane-reforming reactions for producing synthesis gas. To understand the roles of the nature of the precursor and calcination conditions on the formation of LaNixAl1-xO3, we carried out identifications using NMR, FT-IR, XRD, SEM, and TEM. The precursor struc...
متن کاملSimulation of a Solid Oxide Fuel Cell with External Steam Methane Reforming and Bypass
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. The eligibility of a combined heat and power (CHP) system has been investigated as a new power generation methode, in this study. Natural gas fueled SOFC power systems via methane steam reforming (MSR) yield electrical conversion efficiencies exceeding 50% and...
متن کاملMethane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method
An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...
متن کاملSurface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts
An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shi...
متن کامل